MATH2050C Selected Solution to Assignment 7

Section 3.7

(11). Yes, $\sum a_{n}^{2}$ is convergent when $\sum a_{n}$ is convergent where $a_{n} \geq 0$. For, when the latter series is convergent, it implies in particular that $\left\{a_{n}\right\}$ is bounded. We can find some M such that $0 \leq a_{n}<M$. For $\varepsilon>0$, there exists some n_{0} such that $\sum_{k=m+1}^{n} a_{n}<\varepsilon / M$ for all $n, m \geq n_{0}$. But then

$$
\sum_{k=m+1}^{n} a_{k}^{2} \leq M \sum_{k=m+1}^{n} a_{k}<M \frac{\varepsilon}{M}=\varepsilon
$$

so $\sum a_{n}^{2}$ is convergent by Cauchy Convergence Criterion.
(12). No. It suffices to consider $\sum 1 / n^{2}$.
(15). Use induction to show

$$
\frac{1}{2}\left(a(1)+2 a(2)+\cdots+2^{n} a\left(2^{n}\right)\right) \leq s\left(2^{n}\right) \leq\left(a(1)+2 a(2)+\cdots+2^{n-1} a\left(2^{n-1}\right)\right)+a\left(2^{n}\right)
$$

where $a_{n}>0$ is decreasing. We work out the right inequality and leave the left one to you. When $n=1$, the right inequality becomes

$$
a(1)+a(2) \leq a(1)+a(2)
$$

which is trivial. Assume it is true for n and we establish it for $n+1$. Indeed, by induction hypothesis and the fact that $\left\{a_{n}\right\}$ is decreasing,

$$
\begin{aligned}
s\left(2^{n+1}\right) & =a(1)+a(2)+\cdots+a\left(2^{n}\right)+a\left(2^{n}+1\right)+\cdots+a\left(2^{n+1}\right) \\
& =s\left(2^{n}\right)+a\left(2^{n}+1\right)+\cdots+a\left(2^{n+1}\right) \\
& \leq\left(a(1)+\cdots+2^{n-1} a\left(2^{n-1}\right)+a\left(2^{n}\right)\right)+a\left(2^{n}+1\right)+\cdots+a\left(2^{n+1}\right) \\
& =a(1)+\cdots+2^{n-1} a\left(2^{n-1}\right)+\left(a\left(2^{n}\right)+a\left(2^{n}+1\right)+\cdots+a\left(2^{n+1}-1\right)\right)+a\left(2^{n+1}\right) \\
& \leq a(1)+\cdots+2^{n-1} a\left(2^{n-1}\right)+2^{n} a\left(2^{n}\right)+a\left(2^{n+1}\right)
\end{aligned}
$$

done.
(16). We look at $\sum_{n=1}^{\infty} 2^{n} a\left(2^{n}\right)=\sum_{n=1}^{\infty} 2^{n} / 2^{n p}=\sum_{n=1}^{\infty} 2^{(1-p) n}$, which is convergent if and only if $p>1$. We conclude that the p-series is convergent if and only if $p>1$.

Supplementary Problems

1. An infinite series $\sum_{n} x_{n}$ is called absolutely convergent if $\sum_{n}\left|x_{n}\right|$ is convergent. Show that an absolutely convergent infinite series is convergent but the convergence of $\sum_{n} x_{n}$ does not necessarily imply the convergence of $\sum_{n}\left|x_{n}\right|$.
Solution. By Cauchy Convergence Criterion, when $\sum\left|x_{n}\right|$ is convergent, for each $\varepsilon>0$, there is some n_{0} such that

$$
\sum_{k=m+1}^{n}\left|x_{k}\right|<\varepsilon, \quad \forall n, m \geq n_{0}
$$

But then by the triangle inequality it implies

$$
\left|\sum_{k=m+1}^{n} x_{k}\right| \leq \sum_{k=m+1}^{n}\left|x_{k}\right|<\varepsilon, \quad \forall n, m \geq n_{0}
$$

in other words, the sequence of partial sums for $\sum x_{n}$ forms a Cauchy sequence and hence is convergent.
The series $\sum_{n=1}^{\infty}(-1)^{n+1} / n$ is convergent but $\sum_{n=1}^{\infty} 1 / n$ is divergent.

